Committed to Sustainability.

Armstrong World Industries, Inc. (AWI) is committed to delivering solutions that reduce the environmental impact of the buildings you create, from product design and raw material selection, to how our products are produced and delivered.

Now we provide Environmental Product Declarations (EPDs) to document the sustainability of our products. Inside this UL Environment certified, ISO compliant EPD you will find:

• Performance features like acoustics, light reflectance, and durability
• Product application and use
• Product ingredients and their sources
• Information on how a ceiling system is produced
• Life Cycle Assessment (LCA) results including global warming potential and primary energy usage
• Total impacts over the life cycle of the product

Tectum® ceiling and wall panels deliver a superior combination of performance attributes – excellent sound absorption, textured aesthetics, and a reduced environmental footprint – making it a great product for commercial applications.

Tectum® Direct Attach Ceilings + Wall Panels
1. General Information

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on life cycle assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. **Exclusions:** EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc.

Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. **Comparability:** EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules, or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

<table>
<thead>
<tr>
<th>PROGRAM OPERATOR</th>
<th>UL Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OPERATOR</td>
<td>Armstrong World Industries</td>
</tr>
<tr>
<td>DECLARATION NUMBER</td>
<td>4787863341.101.1</td>
</tr>
<tr>
<td>DECLARED PRODUCT</td>
<td>Tectum® – Ceiling and Wall Panels</td>
</tr>
<tr>
<td>DATE OF ISSUE</td>
<td>May 18, 2017</td>
</tr>
<tr>
<td>PERIOD OF VALIDITY</td>
<td>5 Years</td>
</tr>
</tbody>
</table>

CONTENTS OF THE DECLARATION

- Product definition and information about building physics
- Information about basic material and the material’s origin
- Description of the product’s manufacture
- Indication of product processing
- Information about the in-use conditions
- Life cycle assessment results
- Testing results and verifications

The PCR review was conducted by: Review Panel

This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories

- INTERNAL
- EXTERNAL

Wade Stout, UL Environment

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

Thomas Gloria, Industrial Ecology Consultants
2. Product System Documentation

2.1 Product Description

Armstrong® Tectum® Ceiling and Wall Panels are cementitious wood fiber (excelsior). The wood fiber comes from a single source that is Forest Stewardship Council certified. Panels are Class A fire-retardant. Tectum is manufactured by Armstrong World Industries in Newark, OH.

2.2 Application

Commercial Interior Finish. Acoustical, ceiling and wall system. The ceiling system must be installed in accordance with Armstrong Ceiling Solutions installation instructions. For installation instructions visit www.armstrongceilings.com/tectum.

2.3 Technical Data

There are different levels of performance associated with composite panels. Performance information is included in this EPD to provide a total understanding of this product and its performance attributes.

<table>
<thead>
<tr>
<th>Performance of Tectum® Ceiling and Wall Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items Included in this EPD</td>
</tr>
<tr>
<td>Tectum Square Tegular Panels for 15/16” Suspension System</td>
</tr>
<tr>
<td>Tegular</td>
</tr>
<tr>
<td>Tectum Direct Attach Panels</td>
</tr>
<tr>
<td>Direct Attach</td>
</tr>
<tr>
<td>Tectum Lay-In for 15/16” Suspension System</td>
</tr>
</tbody>
</table>

* Visit armstrongceilings.com/tectum

According to ISO 14025
2. Product System Documentation (continued)

2.4 Placing On the Market/Application Rules

The respective standard is listed in the table in Section 2.3 above for each attribute of the declared product.

EN ISO 14025:2006, Environmental labels and declarations – Type III – environmental declarations – Principles and procedures
ASTM E1264-08e1 Standard Classification for Acoustic Ceiling Products
ASTM E84-12 Standard Test Method for Surface Burning Characteristics of Building Materials
ASTM C636 / C636M-08 Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels
ASTM C423-09a Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
ASTM E1414 / E1414M-11a Standard Test Method for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum
ASTM E1110-06 (2011) Standard Classification for Determination of Articulation Class

2.5 Delivery Status

Armstrong® ceiling panels are well packaged in a variety of recyclable corrugated sleeves and box styles. Wooden pallets are used to protect unit loads during shipping.
2. Product System Documentation (continued)

2.6 Material Content

- Aspen Wood Fiber Core – a core made of a renewable source – aspen wood fiber
- Primary Binder – a mix of magnesium sulfate and magnesium oxide form a primary binder
- Secondary Binder – sodium silicate and calcium carbonate create a secondary binder
- Coating – applied to the face of the panel

Figure 1. Composition of Tectum® Ceiling and Wall Panel

<table>
<thead>
<tr>
<th>Mineral Fiber</th>
<th>Finished Product</th>
<th>Renewable</th>
<th>Abundant</th>
<th>Origin</th>
<th>Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen Wood Fiber</td>
<td>40-60%</td>
<td></td>
<td>□</td>
<td>US</td>
<td>Truck</td>
</tr>
<tr>
<td>Magnesium Oxide</td>
<td>20-30%</td>
<td></td>
<td>□</td>
<td>US</td>
<td>Truck</td>
</tr>
<tr>
<td>Sodium Silicate</td>
<td>10-20%</td>
<td></td>
<td>□</td>
<td>US</td>
<td>Rail</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td>1-10%</td>
<td></td>
<td>□</td>
<td>US</td>
<td>Rail</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>1-10%</td>
<td></td>
<td>□</td>
<td>US</td>
<td>Truck</td>
</tr>
<tr>
<td>Coating</td>
<td>1-5%</td>
<td></td>
<td></td>
<td>US</td>
<td>Truck</td>
</tr>
</tbody>
</table>
2. Product System Documentation (continued)

2.7 Manufacture

Figure 2: Process for Manufacturing Tectum® Ceiling and Wall Panels

Aspen wood fibers are shipped to the plant in bales (similar to hay bales) and “combed” and separated. The fibers are then coated with a binder solution to form the base mat. The conveyor assists in forming, and creates the outer edges of the base mat. A tenor board then flattens the top of the mat, and once a base is formed, a final coat of binder is applied.

In the finishing process, steam is introduced to the mat and run through a press to create a reaction with the binder that results in the desired panel thickness. The mat is flood-coated with a finishing solution to add filler, strength, and machinability to the panel. The mat flows through numerous dryers; edges are trimmed; and the mat is cut into desired finished panels using carbide-tip saws. The final product is then packaged for shipment.

2.8 Health, Safety, and Environmental Aspects During Manufacturing

Armstrong World Industries has a comprehensive environmental, health, and safety management program. Risk reduction begins in the product design process. All products go through a safety, health, and environmental review prior to sale. Armstrong World Industries also has a long standing commitment to the safety and health of all our employees. The company’s safety management program is considered to be world class. Our OSHA recordable incident rate is below 1.0, meaning that there is less than one injury per 100 employees per year. All employees view safety as a key responsibility of their jobs. In 2010, Armstrong World Industries was named one of “America’s Safest Companies” by EHS Today.

Armstrong World Industries is equally committed to reducing our environmental impact. As with safety goals, each manufacturing facility has environmental initiatives focused on responsible use of energy and water as well as waste reduction.

2.9 Installation of Ceiling and Wall Systems

The ceiling and wall system must be installed in accordance with Armstrong Ceiling Solutions Installation Instructions. Our ceiling system installation brochure, "Installing Suspended Ceilings", is a general application overview, covering essential steps of a basic suspended ceiling installation.

You can reference this document at www.armstrongceilings.com/installation.

In addition, specific instructions are available for the different Tectum® Ceiling and Wall Systems on each product page. These documents can be referenced at www.armstrongceilings.com/tectum.
According to ISO 14025

TECTUM® CEILING PANELS AND DIRECT ATTACH WALLS

ENVIRONMENTAL PRODUCT DECLARATION

2. Product System Documentation (continued)

2.10 Packaging

Tectum® ceiling and wall panels are well packaged in a variety of recyclable corrugated sleeves and box styles. Wooden pallets are used to protect unit loads during shipping.

2.11 Condition of Use

It is very important that Tectum® ceiling and wall panels be allowed to reach room temperature and have a stabilized moisture content for a minimum of 72 hours before installation. The panels should not, however, be installed in spaces where the temperature or humidity conditions vary greatly from the temperatures and conditions that will be normal in the occupied space. Relative humidity shall not fall below 25% or exceed 55%.

2.12 Health, Safety, and Environmental Aspects During Installation

This wood product contains an inorganic coating with residual amounts of naturally occurring crystalline silica. Sawing, sanding, and machining these products can produce dust. Airborne dust can cause respiratory, eye, and skin irritation. The International Agency for Research on Cancer (IARC) has classified wood dust and crystalline silica dust as a carcinogen.

Precautionary Measures: if power tools are used, they should be equipped with a dust collector. If high dust levels are encountered, use an appropriate NIOSH-designed dust mask. Avoid dust contact with eyes and skin.

First Aid Measure in Case of Irritation: flush eyes or skin with water for at least 15 minutes.

Installers should wear appropriate personal protective equipment, such as gloves and safety glasses, to minimize exposure to dust and the potential for skin irritation.

2.13 Reference Service of Life

The system is warranted for 30 years; however, ceiling panels can last as long as the building’s useful life if properly installed and maintained. The useful life indicated in the PCR for ceiling panels is 75 years. Warranty details can be found on each product page at www.armstrongceilings.com/tectum.

2.14 Extraordinary Effects

- **Fire Performance**

 ASTM E84 surface burning characteristics, HPVA Certified with audit program per ASTM E84. Flame Spread Index 25 or less. Smoke Developed Index 50 or less.

 CAN/ULC S102 surface burning characteristics. Flame Spread Rating 25 or less. Smoke Developed Classification 50 or less.

 ASTM E1264 Classification: Composite – Fire Class A.

- **Seismic Performance**

 Seismic Categories C, D, E, and F

 ICC-ES ESR-1308 – see http://www.armstrongceilings.com/seismicRX
2. Product System Documentation (continued)

2.15 Disposal

Disposal in municipal landfill or commercial incineration facilities is permissible and should be done in accordance with local, state, and federal regulations.

3. Life Cycle Assessment

This study provides life cycle inventory and environmental impacts relevant to Tectum® ceiling and wall panels. This LCA was conducted to 1) better understand the environmental impacts of the life cycle of ceilings and walls; 2) learn how the impacts of raw material selection, product formulation, and manufacturing process influence the life cycle impacts of ceilings and walls.

The methods for conducting the life cycle assessments used for this project were consistent with ISO 14040, 14044 and EN15804. This report is intended to fulfill the reporting requirements in Section 5 of ISO 14044 and Product Category Rules Guidance for Building-Related Products and Services Part B: Non-Metal Ceiling Panel EPD Requirements.

3.1 Declared and Functional Unit

The declared unit for this EPD is 1 ft² of Tectum® ceiling and wall panels in use over 75 years. Armstrong World Industries has chosen to also report for 1 ft².

<table>
<thead>
<tr>
<th>Tectum® 2.0 Inch Board</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared Unit</td>
<td>1 ft²</td>
</tr>
<tr>
<td>Declared Thickness (inches)</td>
<td>2</td>
</tr>
<tr>
<td>Surface Weight (lb/ft²)</td>
<td>3.500</td>
</tr>
<tr>
<td>Declared Unit</td>
<td>1 m²</td>
</tr>
<tr>
<td>Declared Thickness (cm)</td>
<td>5.080</td>
</tr>
<tr>
<td>Surface Weight (kg/m²)</td>
<td>17.087</td>
</tr>
</tbody>
</table>
3. Life Cycle Assessment (continued)

3.2 System Boundaries:

The system boundaries studied as part of this life cycle assessment include extraction of primary materials, raw materials manufacture, panel production, installation, and end-of-life.

The phases below outline a “cradle-to-grave” life cycle assessment for ceiling panels.

Ceiling Panels:

The Cradle-to-Grave Assessment Includes:
- Raw materials production including substrate, coating, and packaging materials for ceiling panels
- Transportation of raw materials to an Armstrong World Industries manufacturing facility
- Manufacturing of the ceiling panels at an Armstrong World Industries manufacturing facility
- Packaging of finished products including energy to operate packaging equipment
- Transportation from manufacturing facility to distribution centers, retailers, and job site (assumed to be 500 miles by truck)
- Use phase covers a useful life of 75 years as suggested in the PCR and includes the transportation and installation of the system
- End of life includes landfill disposal of ceiling panels with assumed 50 miles truck transport from job site to landfill

The Cradle-to-Grave Assessment Excludes:
- Overhead energy usage (heating, lighting) of manufacturing facilities
- Maintenance and operation of support equipment

3.3 Assumptions:

There are no specific assumptions to list that are not dealt with in the appropriate section. When an assumption is made it will be described within the specific stage of the report. As an example a 7% waste factor was utilized for the waste generated during the installation of the product. This is described in more detail within the installation section of the report.

3.4 Cut-off Criteria:

- Mass – If a flow is less than 1% of the cumulative mass of the model, it is excluded, providing its environmental relevance is not a concern.
- Environmental relevance – If a flow meets the above criteria for exclusion, yet is believed to potentially have a significant environmental impact, it is included.
- Energy – If a flow is less than 1% of the cumulative energy of the model, it is excluded, providing its environmental relevance is not a concern.
3. Life Cycle Assessment (continued)

3.5 Background Data:

All data is reported as a North American weighted average across our ceiling and suspension system plant locations. All Tectum® ceiling and wall panels are manufactured Newark, OH, and are shipped all across North America. Shipping data was utilized to determine that the average shipping distance from manufacturing to customer is approximately 2,240 miles. If product is not recycled, disposal transportation at end of life is assumed to be 50 miles.

3.6 Data Quality:

Data for the Tectum® was provided by our manufacturing location and is believed to be high quality and consistent with industry data.

The LCA model was created using the GaBi Software system for life cycle engineering, developed by thinkstep. The GaBi database provides the life cycle inventory data for several of the raw and process materials obtained from the background system. The data quality is considered to be good to high quality. With the exception of supplier specific data, all other relevant background data was taken from the GaBi database software.

All gate-to-gate, primary foreground data was collected for the ceiling panels manufacturing process. Background data was collected from suppliers or generic data was used. When generic data was used, it was verified and triangulated against several sources.

3.7 Period Under Review

Calendar year 2015 manufacturing data was used to create the LCA model.
3. Life Cycle Assessment (continued)

3.8 Allocation:

No allocation was performed within the modeling of the unit processes for Tectum® ceiling and wall panels. Credits for electricity and heat gained from thermal recycling of waste and packaging in a solid waste incinerator and/or landfill were not taken in this study.

4. LCA: Scenarios and Additional Technical Information

– Ceiling Panel Impacts:
 The majority of the environmental impacts for this product occur during the extraction and processing of raw materials detailed in the Production Stage. For most ceiling panels, the opportunity for reduction is in the manufacturing process as well as reductions associated with raw materials.

– Use Stage:
 Although Armstrong World Industries provides a 30-year ceiling system warranty, the use stage is defined in the PCR at 75 years and this is what was used in the LCA. The assumption is that the ceiling system requires no cleaning or maintenance so the impact is very small.

– End-of-Life Impacts:
 End-of-life impacts associated with landfilling and/or incineration of Tectum® ceiling and wall panels range from 5% to 58% of all impact categories. For example, end-of-life represented approximately 30% of the overall global warming potential impacts for a Tectum tile.

Transport To The Building Site (A4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit</th>
<th>Tectum®, E+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters of fuel</td>
<td>l/100km</td>
<td>3.41E+03</td>
</tr>
<tr>
<td>Transport distance</td>
<td>km</td>
<td>8.05E+02</td>
</tr>
<tr>
<td>Capacity utilization (including empty runs)</td>
<td>%</td>
<td>6.7E+01</td>
</tr>
<tr>
<td>Gross density of products transported</td>
<td>kg/m³</td>
<td>8.5E-01</td>
</tr>
<tr>
<td>Capacity utilization volume factor</td>
<td>–</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>
4. LCA: Scenarios and Additional Technical Information (continued)

Installation Into The Building (A5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1 m²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water Consumption</td>
<td>m³</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Resources</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electricity Consumption</td>
<td>kWh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Energy Carriers</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Loss</td>
<td>kg</td>
<td>9.23E-02</td>
<td>6.57E-03</td>
</tr>
<tr>
<td>Ceiling Panel Mounting System (CPMS)</td>
<td>kg</td>
<td>1.12E+00</td>
<td>1.04E-01</td>
</tr>
<tr>
<td>Output substances following waste treatment on site</td>
<td>kg</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Dust in Air</td>
<td>kg</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>VOC in Air</td>
<td>kg</td>
<td>negligible</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Installation Into the Building

There is no energy or water use required for the ceiling system installation. For suspended ceiling systems, a 7% waste factor was assumed on site during construction. This value is based on historic internal studies which have documented the quantity of scrap that is generated at the job site due to needed cuts (to allow for the installation of sprinkler heads, for example) or mistakes. It is assumed that all of the on-site scrap material will be sent to a landfill located within 50 miles of the jobsite. The Prelude® suspension was considered as part of the ceiling panel mounting system (CPMS).

The values in the table above are based on a Prelude system used to install 2’ x 2’ square tiles at a typical depth of 4 feet from the deck. Hanger wires are every 4 feet and assumed that 6-foot long 12-gauge wire was utilized.

End-of-Life

The end-of-life phase for the ceiling tiles was included in the study. End-of-life impacts include disposal of panels, scrap, and packaging at the end of installation. The study was also conservative in the fact that it did not take credit for any energy that was recovered in the incineration of landfill process.
5. LCA: Results

The life cycle assessment (LCA) was performed according to ISO 14040 and follows the PCR instructions. The cradle-to-grave LCA encompasses raw material production; transport of raw materials to production facility; manufacturing of panels; packaging; transportation to job site; use phase; and end-of-life including disposal or recycling.

Table 1. Description of the system boundary (X = Included in LCA; MND = Module not declared)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END-OF-LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport from gate site</td>
<td>Assembly/Install</td>
</tr>
<tr>
<td>All A – C modules mandatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X X X X X X X X X X X X X X X X X

Cradle to grave – m²

X X X X X X X X X X X X X X X X X

Life Cycle Environmental Impact Results: 1 m² Tectum® Panel

Declared Unit: 1 m² of Tectum® Ceiling and Wall Panels for use over 75 years, impacts based on U.S. EPA TRACI 2.1 Impact Factors

Table 2. North American LCA Environmental Impact Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>1 m²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
<td>kg CO2-Eq.</td>
<td>1.24E+00</td>
<td>1.34E+01</td>
</tr>
<tr>
<td>ODP</td>
<td>Stratospheric ozone layer depletion</td>
<td>kf CFC-11 Eq.</td>
<td>2.51E-11</td>
<td>2.70E-10</td>
</tr>
<tr>
<td>AP</td>
<td>Acidification potential</td>
<td>kg SO2 - Eq.</td>
<td>4.44E-03</td>
<td>4.78E-02</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
<td>kg N - Eq.</td>
<td>2.11E-04</td>
<td>2.27E-03</td>
</tr>
<tr>
<td>POCP</td>
<td>Photochemical ozone creation potential</td>
<td>kg O₃ - Eq.</td>
<td>7.04E-02</td>
<td>7.58E-01</td>
</tr>
<tr>
<td>ADP</td>
<td>Abiotic resource depletion potential - fossil fuels</td>
<td>Surplus energy per extracted MJ, KG or m³ fossil fuel as a result of lower quality resources</td>
<td>1.38E+00</td>
<td>1.48E+01</td>
</tr>
</tbody>
</table>
5. LCA: Results (continued)

Table 3. LCA Results: Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>1 m²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>Renewable primary energy as energy carrier</td>
<td>MJ, LHV</td>
<td>1.21E+02</td>
<td>1.12E+01</td>
</tr>
<tr>
<td>PERM</td>
<td>Renewable primary energy resources as material utilization</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERT</td>
<td>Total use of renewable primary energy resources</td>
<td>MJ, LHV</td>
<td>1.21E+02</td>
<td>1.12E+01</td>
</tr>
<tr>
<td>PENRE</td>
<td>Non-renewable primary energy as energy carrier</td>
<td>MJ, LHV</td>
<td>1.42E+02</td>
<td>1.32E+01</td>
</tr>
<tr>
<td>PENRM</td>
<td>Non-renewable primary energy as material utilization</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PENRT</td>
<td>Total use of non-renewable primary energy resources</td>
<td>MJ, LHV</td>
<td>1.42E+02</td>
<td>1.32E+01</td>
</tr>
<tr>
<td>SM</td>
<td>Use of secondary material</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RSF</td>
<td>Use of renewable secondary fuels</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NRSF</td>
<td>Use of non-renewable secondary fuels</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FW</td>
<td>Use of net fresh water</td>
<td>m³</td>
<td>1.93E+01</td>
<td>1.79E+00</td>
</tr>
</tbody>
</table>

Table 4. LCA Results: Output Flows and Waste Categories

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>1 m²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NHWD</td>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>2.11E-01</td>
<td>1.96E-02</td>
</tr>
<tr>
<td>RWD</td>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRU</td>
<td>Components for reuse</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MFR</td>
<td>Materials for recycling*</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MER</td>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EE</td>
<td>Exported energy</td>
<td>MJ, LHV</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for reuse; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy
6. LCA: Interpretation

From the results of the Tectum® life cycle covered in this study, it was concluded that the panel manufacturing process and raw materials – specifically, mineral wool in the ceiling panel and steel in the suspension systems – have the greatest impact on primary energy demand (PED) and carbon footprint (represented by global warming potential [GWP]).

Life Cycle Impact Assessment of Tectum® ceiling and wall panels¹ relative importance in percentage terms for the production, use, and end-of-life stages for the ceiling panel.

¹ Based on U.S. EPA TRACI 2.1 Impact Factors
7. References

PCR

UL Environment
UL Environment General Program Instructions April 2015, version 2

Sustainability Reporting Standards
EN 15804: 2012-04 – Sustainability of construction works – Environmental Product Declarations – Core rules for the product category of construction product.

ISO 14025: 2006 – Environmental labels and declarations – Type III environmental declarations – Principles and procedures

ISO 15392: 2008 – Sustainability in building construction – General principles

Testing And Classification References
ASTM C423 – Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM C636 – Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustic Panel and Lay-in Panels

ASTM E84 – Test Method for Surface Burning Characteristics of Building Materials

ASTM E1110 – Standard Classification for Determination of Articulation Class

ASTM E1264 – Standard Classification for Acoustical Ceiling Products

ASTM E1414 – Standard Test Method for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum

ASTM E1477 – Standard Test Method for Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers

ASTM E413 – Classification for Rating Sound Insulation

7. References (continued)

Relevant Federal Standards and SOPS
Environment Canada, National Pollutant Release Inventory (http://www.ec.gc.ca/nrp-npri/)
EPCRA 313 Toxic Release Inventory Reporting (U.S.) (http://www2.epa.gov/toxics-release-inventory-tri-program)
US: Resource Conservation and Recovery Act (RCRA), Clause C (http://www.epa.gov/region6/rcra/)

Relevant PCRs
UL Environment General Program Instructions April 2015, version 2
EN 15804: 2012-04 – Sustainability of construction works – Environmental Product Declarations – Core rules for the product category of construction product.
ISO 14025: 2006 – Environmental labels and declarations – Type III environmental declarations – Principles and procedures