Committed to Sustainability.

Armstrong World Industries is committed to delivering solutions that reduce the environmental impact of the buildings you create; from product design and raw material selection, to how our products are produced and delivered.

Now we provide Environmental Product Declarations (EPDs) to document the sustainability of our products. Inside this UL Environment certified ISO compliant EPD you will find:

- Performance features like acoustics, light reflectance, and durability
- Product application and use
- Product ingredients and their sources
- Information on how a ceiling system is produced
- Life Cycle Assessment (LCA) results including global warming potential and primary energy usage
- Total impacts over the life cycle of the product

Lyra® PB ceilings deliver a superior combination of performance attributes – superior sound absorption, clean aesthetics, and a reduced environmental footprint – making it a great product for commercial applications.

Lyra® PB Square Tegular panels with Suprafine® 9/16 suspension system
Environmental Product Declaration

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. **Exclusions:** EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. **Accuracy of Results:** EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. **Comparability:** EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

<table>
<thead>
<tr>
<th>PROGRAM OPERATOR</th>
<th>UL Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION HOLDER</td>
<td>Armstrong</td>
</tr>
<tr>
<td>DECLARATION NUMBER</td>
<td>4786828541.111.1</td>
</tr>
<tr>
<td>DECLARED PRODUCT</td>
<td>Lyra® PB Ceiling Panels – High Performance Fiberglass</td>
</tr>
<tr>
<td>DATE OF ISSUE</td>
<td>March 31, 2016</td>
</tr>
<tr>
<td>PERIOD OF VALIDITY</td>
<td>5 Years</td>
</tr>
<tr>
<td>CONTENTS OF THE DECLARATION</td>
<td>Product definition and information about building physics Information about basic material and the material’s origin Description of the product’s manufacture Indication of product processing Information about the in-use conditions Life cycle assessment results Testing results and verifications</td>
</tr>
</tbody>
</table>

The PCR review was conducted by: Review Panel
Dr. Lindita Bushi
epd@ul.com

This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories
☐ INTERNAL
☒ EXTERNAL

Wade Stout, UL Environment

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

Thomas Gloria, Industrial Ecology Consultants
2. Product System Documentation

2.1 Product Description

Armstrong® Lyra® PB Ceiling Panels are fiberglass acoustical ceiling panels, featuring a fine-textured, non-directional DuraBrite® surface for increased durability and superior light reflectance. This EPD includes Lyra and Lyra Plant Based (PB) Items. Lyra PB ceiling panels are manufactured by Armstrong World Industries in Hilliard, Ohio (43026).

2.2 Application

Commercial Interior Finish. Acoustical, Suspended Ceiling System. The ceiling system must be installed in accordance with Armstrong Ceilings installation guidelines. Our ceiling system installation brochure, “Installing Suspended Ceilings”, is a general application overview, covering essential steps of a basic suspended ceiling installation. You can reference this document at armstrongceilings.com/sustain.

2.3 Technical Data

There are different levels of performance associated with fiberglass ceiling panels. Performance information is included in this EPD to provide a total understanding of this product and its performance attributes.

Performance of Lyra PB Ceiling Panels¹

<table>
<thead>
<tr>
<th>Items Included in this EPD</th>
<th>Attributes</th>
</tr>
</thead>
</table>
| Lyra PB Square Tegular Panels for 15/16" Suspension System | NRC 0.95
NRC is measured according to ASTM C423 |
| Lyra PB Square Tegular Panels for 9/16" Suspension System | CAC 42²
AC 200
AC is measured according to ASTM E1110 and E1111
Fire Rating: Class A
Flame Spread Index (FSI)/Smoke Developed Index (SDI) ASTM E84; UL 723; CAN/ULC – S102M |
| Lyra PB Square Lay-in Panels for 15/16" Suspension System | Light Reflectance 0.88 |
| Lyra Concealed Panels for 15/16" Suspension System | Sag-resistant (HumiGuard® Plus humidity resistance) |

¹ Data shows a range of attributes for the Lyra PB product family.
2. Product System Documentation (continued)

2.4 Placing On the Market/Application Rules

The respective standard is listed in the table in Section 2.3 above for each attribute of the declared product.

EN ISO 14025:2006, Environmental labels and declarations – Type III – environmental declarations - Principles and procedures
ASTM E1264-08e1 Standard Classification for Acoustic Ceiling Products
ASTM E84-12 Standard Test Method for Surface Burning Characteristics of Building Materials
ASTM C636 / C636M-08 Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels
ASTM C423-09a Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
ASTM E1414 / E1414M-11a Standard Test Method for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum
ASTM E1110-06 (2011) Standard Classification for Determination of Articulation Class

2.5 Delivery Status

Armstrong® ceiling panels are well packaged in a variety of recyclable corrugated sleeves and box styles. Wooden pallets are used to protect unit loads during shipping.
2. Material Content

- **Fiberglass Core Scrim** – A non-woven facing attached to the mineral fiber core with a latex adhesive
- **Face Coating** – Durable, highly light-reflectant finish paint coating applied to the scrim
- **Hot Dipped Galvanized Steel Painted Finish** – Painted steel capping

Material Content of Lyra PB Ceiling Panels

<table>
<thead>
<tr>
<th>Mineral Fiber Core</th>
<th>Function</th>
<th>Quantity (Percent by Weight)</th>
<th>Recycled Material</th>
<th>Mineral Resource</th>
<th>Non-Renewable</th>
<th>Abundant</th>
<th>Recycled Material</th>
<th>Origin</th>
<th>Transportation Mode</th>
<th>Transportation Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Fibers</td>
<td>Acoustics</td>
<td>60-75%</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Global</td>
<td>Truck/Rail</td>
<td>750-1400</td>
</tr>
<tr>
<td>Organic Binder</td>
<td>Binder</td>
<td>5-15%</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Global</td>
<td>Truck/Ship</td>
<td>750-1400</td>
</tr>
<tr>
<td>Coating</td>
<td>Finish</td>
<td>15-25%</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>U.S.</td>
<td>Truck/Rail</td>
<td>400-4000</td>
</tr>
<tr>
<td>Scrim</td>
<td>Finish</td>
<td>1-5%</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Global</td>
<td>Truck/Ship</td>
<td>6000-7000</td>
</tr>
<tr>
<td>Adhesive</td>
<td>Finish</td>
<td>1-5%</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>U.S.</td>
<td>Truck</td>
<td><500</td>
</tr>
</tbody>
</table>
2. Product System Documentation (continued)

2.7 Manufacture

Figure 3: Process for Manufacturing Lyra PB Ceiling Panels

Lyra® PB fiberglass substrate is formed by combining a binder with a fiberglass mat which is compressed and cured to form a board. Then Lyra PB fiberglass ceiling panels are finished by laminating a scrim, painting, cutting to size, and adding edge details. After packaging, the material is shipped and installed. At the end of its useful life, the ceiling panel can then be recycled, sent to a landfill, or incinerated. Recycled ceilings can be returned to Armstrong World Industries as part of our recycling process.

2.8 Health, Safety, and Environmental Aspects During Manufacturing

Armstrong World Industries has a comprehensive environmental, health, and safety management program. Risk reduction begins in the product design process. All products go through a safety, health, and environmental review prior to sale. Armstrong also has a long standing commitment to the safety and health of all our employees. The company's safety management program is considered to be World Class. Our OSHA recordable incident rate is below 1.0, meaning that there is less than one injury per 100 employees per year. All employees view safety as a key responsibility of their jobs. In 2010, Armstrong was named one of “America’s Safest Companies” by EHS Today.

Armstrong World Industries is equally committed to reducing our environmental impact. As with safety goals, each manufacturing facility has environmental initiatives focused on responsible use of energy and water, and on waste reduction.

2.9 Installation of Ceiling Systems

The ceiling system must be installed in accordance with Armstrong Ceilings installation guidelines. Our ceiling system installation brochure, “Installing Suspended Ceilings”, is a general application overview, covering essential steps of a basic suspended ceiling installation. You can reference this document at www.armstrongceilings.com/installationinstructions.

2.10 Packaging

Armstrong® ceiling panels are well packaged in a variety of recyclable corrugated sleeves and box styles. Wooden pallets are used to protect unit loads during shipping.
2. Product System Documentation (continued)

2.11 Condition of Use

Lyra PB ceiling panels are HumiGuard® Plus humidity resistance – offering superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications.

Cleaning instructions for Lyra PB ceilings can be found at www.armstrongceilings.com/installationinstructions.

2.12 Health, Safety, and Environmental Aspects During Installation

There are no recognized systemic hazards associated with installing ceiling panels. Armstrong World Industries recommends that installers handle materials in a manner to minimize airborne dust. Installers should wear appropriate personal protective equipment, such as gloves, safety glasses, and dust mask, to minimize exposure to dust and the potential for skin irritation.

2.13 Reference Service of Life

The system is warranted for 30 years of use; however, ceiling panels can last as long as the building’s useful life if properly installed and maintained. The useful life indicated in the PCR for ceiling panels is 75 years. Warranty details can be found at www.armstrongceilings.com/warranty.

2.14 Extraordinary Effects

– Fire Performance
 ASTM E84 and CAN/ULC S102 surface burning characteristics. Flame Spread Index 25 or less. Smoke Developed Index 50 or less. (UL labeled)

– Water/Sag Resistance
 HumiGuard® Plus panels offer superior resistance to sagging in high humidity conditions up to, but not including, standing water and outdoor applications and carries a 30-year limited system warranty.

– Insulation Value
 All Lyra PB Items – 1” Tegular
 R Factor – 4.4 (BTU units)
 R Factor – 0.76 (Watts units)

– Seismic Performance
 Seismic Categories C, D, E, and F
 ICC-ES ESR-1308 – see armstrongceilings.com/seismicrx

– Acoustical Panel Classification
 ASTM E1264 - Standard Classification for Acoustical Ceiling Products
 Type XII, Form 2, Pattern E, Fire Class A
2. Product System Documentation (continued)

2.15 Re-Use Phase

The preferred reuse method for a ceiling panel is to be recycled through the Armstrong Ceiling Recycling Program. Contact our Recycling Center at 1 877 276 7876 (press option 1, then 4), or visit www.armstrongceilings.com/ceilingrecycling. Armstrong World Industries started reclaiming and recycling ceiling panels in 1997. To date, Armstrong has recycled over 180 million square feet of used ceilings into new ceiling products.

2.16 Disposal

Disposal in municipal landfill or commercial incineration facilities is permissible and should be done in accordance with local, state, and federal regulations.

Installation waste is minimized by the modular aspect of the ceiling panel system. A conservative 7% waste factor was assumed on-site during construction. This value is based on historic internal studies which have documented the quantity of scrap that is generated at the job site due to needed border cuts, penetrations, or installer mistakes. While this material can be and is recycled from some jobs, in this case, it is assumed that all of the on-site scrap material will be sent to a landfill located within 50 miles of the job site.

3. Life Cycle Assessment

This study provides life cycle inventory and environmental impacts relevant to Armstrong® suspended ceilings. This LCA was conducted to 1) better understand the environmental impacts of the life cycle of suspended ceiling systems; 2) learn how the impacts of raw material selection, product formulation, and manufacturing process influence the life cycle impacts of suspended ceilings, and 3) use innovation to drive reduction in the product platform.

The methods for conducting the life cycle assessments used for this project were consistent with ISO 14040 and 14044. This report is intended to fulfill the reporting requirements in Section 5 of ISO 14044 and Product Category Rules Guidance for Building-Related Products and Services Part B: Non-Metal Ceiling Panel EPD Requirements.

3.1 Declared and Functional Unit

The declared unit for this EPD is 1 M² of Lyra PB ceiling panel for use over 75 years.

Armstrong World Industries has chosen to also report for 1 ft².

<table>
<thead>
<tr>
<th>Lyra PB</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared Unit</td>
<td>ft²</td>
</tr>
<tr>
<td>Declared Thickness (inches)</td>
<td>1</td>
</tr>
<tr>
<td>Surface Weight (lb/ft²)</td>
<td>0.46</td>
</tr>
<tr>
<td>Declared Unit</td>
<td>m²</td>
</tr>
<tr>
<td>Declared Thickness (cm)</td>
<td>2.540</td>
</tr>
<tr>
<td>Surface Weight (kg/m²)</td>
<td>2.250</td>
</tr>
</tbody>
</table>
3. Life Cycle Assessment (continued)

3.2 System Boundaries:

The system boundaries studied as part of this life cycle assessment include extraction of primary materials, raw materials manufacture, ceiling panel production, installation, and end of life.

The phases below outline a “cradle-to-grave” life cycle assessment for ceiling panels.

Ceiling Panels:

The Cradle-to-Grave Assessment Includes:

- Raw materials production including substrate, coating, and packaging materials for ceiling panels
- Transportation of raw materials to Armstrong Ceilings manufacturing facility
- Manufacturing of the ceiling panels at an Armstrong Ceilings manufacturing facility
- Packaging of finished products including energy to operate packaging equipment
- Transportation from manufacturing facility to distribution centers, retailers, and job site (assumed to be 500 miles by truck)
- Use phase covers a useful life of 75 years as suggested in the PCR and includes the transportation and installation of the system
- End of life includes landfill disposal of ceiling panels with assumed 50 miles truck transport from job site to landfill

The Cradle-to-Grave Assessment Excludes:

- Overhead energy usage (heating, lighting) of manufacturing facilities
- Maintenance and operation of support equipment

3.3 Assumptions:

There are no specific assumptions to list that are not dealt with in the appropriate section. When an assumption is made it will be described within the specific stage of the report. As an example a 7% waste factor was utilized for the waste generated during the installation of the product. This is described in more detail within the installation section of the report.

3.4 Cut-off Criteria:

- Mass – If a flow is less than 1% of the cumulative mass of the model, it is excluded, providing its environmental relevance is not a concern.
- Environmental relevance – If a flow meets the above criteria for exclusion, yet is believed to potentially have a significant environmental impact, it is included.
- Energy – If a flow is less than 1% of the cumulative energy of the model, it is excluded, providing its environmental relevance is not a concern.
3. Life Cycle Assessment (continued)

3.5 Background Data:

All data is reported as a North American weighted average across our ceiling plant locations. The majority of Armstrong® ceiling products are distributed within 500 miles of the respective manufacturing plants. The same distribution trucks that take material to distribution centers backhaul post-consumer recycled ceiling panels to the manufacturing plants as part of our closed loop reclamation program. If product is not recycled, disposal transportation at end of life is assumed to be 50 miles.

This map shows the location of Armstrong Ceilings manufacturing facilities with a circle denoting a 500-mile radius from each location.

Transportation emissions and fuels throughout the life cycle phases are included. All transportation associated with raw materials reflects the actual modes of transportation and mileage with the exception of recycled ceilings which assumes a transportation distance of 500 miles by truck.

3.6 Data Quality:

Data for the fiberglass substrate and scrim was provided by the supplier. This data is believed to be of high quality and is consistent with industry data for fiberglass.

The LCA model was created using the GaBi Software system for life cycle engineering, developed by Think Step. The GaBi database provides the life cycle inventory data for several of the raw and process materials obtained from the background system. The data quality is considered to be good to high quality. With the exception of supplier specific data, all other relevant background data was taken from the GaBi database software.

All gate-to-gate, primary foreground data was collected for the ceiling panels manufacturing process. Background data was collected from suppliers or generic data was used. When generic data was used, it was verified and triangulated against several sources.

3.7 Period Under Review

Calendar year 2014 manufacturing data was used to create the LCA model.
3. Life Cycle Assessment (continued)

3.8 Allocation:

No allocation was performed within the modeling of Armstrong World Industries unit processes for Lyra® PB fiberglass ceiling panels. Allocation occurred at the end of life phase for ceiling panels as they were partitioned based on 1% overall ceiling panel recycling rate. Credits for electricity and heat gained from thermal recycling of waste and packaging in a solid waste incinerator and/or landfill were not taken in this study.

4. LCA: Scenarios and Additional Technical Information

- Ceiling Panel Impacts:
 The majority of the environmental impacts for this product occur during the extraction and processing of raw materials detailed in the Production Stage. For most ceiling panels, the opportunity for reduction is in the manufacturing process as well as reductions associated with raw materials. Recycled glass fibers used in the production process reduce raw material impacts by using less virgin raw materials.

- Use Stage:
 Although Armstrong World Industries provides a 30-year ceiling system warranty, the use stage is defined in the PCR at 75 years and this is what was used in the LCA. The assumption is that the ceiling system requires no cleaning or maintenance so the impact is very small.

- End of Life Impacts:
 End of Life impacts associated with landfilling and/or incineration of Lyra ceiling panels range from 0% to 3.2% of all impact categories. For example, End of Life represented approximately 3% of the overall Global Warming Potential impacts for a Lyra ceiling tile.

Transport To The Building Site (A4)

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Lyra PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters of fuel</td>
<td>1/100km</td>
<td>3412.556</td>
</tr>
<tr>
<td>Transport distance</td>
<td>km</td>
<td>805</td>
</tr>
<tr>
<td>Capacity utilization (including empty runs)</td>
<td>%</td>
<td>67</td>
</tr>
<tr>
<td>Gross density of products transported</td>
<td>kg/m3</td>
<td>0.614</td>
</tr>
<tr>
<td>Capacity utilization volume factor</td>
<td></td>
<td>0.87</td>
</tr>
</tbody>
</table>
4. LCA: Scenarios and Additional Technical Information (continued)

Installation Into The Building (A5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1 M²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water Consumption</td>
<td>m³</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Resources</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electricity Consumption</td>
<td>kWh</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Energy Carriers</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Loss</td>
<td>kg</td>
<td>0.1575</td>
<td>0.0146</td>
</tr>
<tr>
<td>Ceiling Panel Mounting System (CPMS)</td>
<td>kg</td>
<td>1.1230</td>
<td>0.1043</td>
</tr>
<tr>
<td>Material Loss for Ceiling Panel Mounting System</td>
<td>%</td>
<td>0.3333</td>
<td>0.3333</td>
</tr>
<tr>
<td>Output substances following waste treatment on site</td>
<td>kg</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Dust in air</td>
<td>kg</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td>VOC in Air</td>
<td>kg</td>
<td>negligible</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Installation Into the Building

There is no energy or water use required for the ceiling system installation. For suspended ceiling systems, a 7% waste factor was assumed on site during construction. This value is based on historic internal studies which have documented the quantity of scrap that are generated at the job site due to needed cuts (to allow for the installation of sprinkler heads, for example) or mistakes. While this material can be and is recycled from some jobs, it is assumed that all of the on-site scrap material will be sent to a landfill located within 50 miles of the jobsite. The Prelude® suspension was considered as part of the ceiling panel mounting system (CPMS).

The values in the table are based on a Prelude system used to install 2’ x 2’ square tiles at a typical depth of 4 feet from the deck. Hanger wires are every 4 feet and assumed that 6 foot long 12 gauge wire was utilized.

End of Life

End of life impacts include disposal of ceiling panels, scrap and packaging at the end of installation.

The end of life process within the LCA model assumed that 88% of the waste was landfilled and 12% of the waste was incinerated.

Armstrong World Industries offers a ceiling recycling program as a closed loop end of life solution instead of landfill or other alternative disposal methods.

The end of life phase for the ceiling tiles was included in the study. End of life impacts include disposal of ceiling panels, scrap, and packaging at the end of installation. Armstrong World Industries offers a ceiling recycling program as a closed loop end of life solution instead of landfill or alternative disposal methods. Although the ceiling recycling is a successful program, the volume does vary from year to year so a conservative approach was taken within the study to not include the recycle program but to rather consider that all tiles are landfilled or incinerated. The study was also conservative in the fact that it did not take credit for any energy that was recovered in the incineration of landfill process.
4. LCA: Scenarios and Additional Technical Information (continued)

Reuse, Recovery And/Or Recycling Potentials (D), Relevant Scenario Information

Armstrong World Industries offers a ceiling recycling program as a closed loop end of life solution instead of landfill or alternative disposal methods. Although the ceiling recycling is a successful program, the volume does vary from year to year so a conservative approach was taken within the study to not include the recycle program but to rather consider that all tiles are landfilled or incinerated. The study was also conservative in the fact that it did not take credit for any energy that was recovered in the incineration of landfill process.

4.1 Additional Technical Information

In 2012, Armstrong World Industries created a third party verified LCA model to represent the environmental impact the grid would have on the entire ceiling system. Since that time there have been minimal changes to our manufacturing process and we maintain the same manufacturing locations. Although the Product Category Rules do not include suspension systems, we have included the 2012 grid LCA data and results below for informational purposes so our customers may have a better understanding of the environmental impacts of the entire ceiling system. The intent is to create a separate EPD for suspension systems in the future.

Material Content of Suspension Systems

<table>
<thead>
<tr>
<th>Components</th>
<th>FUNCTION</th>
<th>QUANTITY (PERCENT BY WEIGHT)</th>
<th>RECYCLED MINERAL RESOURCE</th>
<th>MINERAL RESOURCE</th>
<th>NON-RENEWABLE</th>
<th>RENEWABLE</th>
<th>ABUNDANT</th>
<th>RECYCLED MATERIAL</th>
<th>ORIGIN</th>
<th>TRANSPORTATION MODE</th>
<th>TRANSPORTATION MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Dipped Galvanized Steel</td>
<td>Suspension</td>
<td>>98%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>Global</td>
<td>Truck</td>
<td>500-600</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td>Finish</td>
<td><2%</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>U.S. Truck/Rail</td>
<td>200-500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Representative Suspension System for which Life Cycle Assessment Data was Compiled

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>ITEMS</th>
<th>MANUFACTURING LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelude® XL® **</td>
<td>7300 / 7301</td>
<td>Aberdeen, MD; Benton Harbor, MI; and Las Vegas, NV</td>
</tr>
<tr>
<td>Main Beam</td>
<td>XL7348 / XL7343 / XL7341</td>
<td></td>
</tr>
<tr>
<td>Cross Tee 4'</td>
<td>XL7328 / XL8320</td>
<td></td>
</tr>
<tr>
<td>Cross Tee 2'</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>Molding</td>
<td>7891</td>
<td></td>
</tr>
</tbody>
</table>

* Prelude XL LCA data is representative of Suprafine® XL, Silhouette® XL, and Interlude® XL Suspension Systems
4.1 Additional Technical Information (continued)

Process for Manufacturing Steel Suspension Systems

Armstrong® suspension systems use hot dipped galvanized steel which is formed into coils. A large component of the steel is recycled material. The coils are split and painted, and then sent to Armstrong World Industries. At the Armstrong Ceilings plant, the steel is pressed, roll formed, punched, and packaged. The material is then shipped and installed. When the system is disassembled, the majority of the steel is recycled.

Life Cycle Phases Included for the Steel Suspension System in Study:
4.1 Additional Technical Information (continued)

The Cradle-to-Grave Assessment Includes:

– Raw materials production including hot dipped galvanized steel master coil production, forming, and packaging
– Transportation of raw materials to Armstrong Ceilings manufacturing facility
– Manufacturing of the suspension system at an Armstrong Ceilings manufacturing facility
– Packaging of finished products including energy to operate packaging equipment
– Transportation from manufacturing facility to distribution centers, retailers, and job site (assumed to be 500 miles by truck)
– Use phase covers a useful life of 75 years as suggested in the PCR and includes the transportation and installation of the system

The Cradle-to-Grave Assessment Excludes:

– Overhead energy usage (heating, lighting) of manufacturing facilities
– Maintenance and operation of support equipment

LCA Detail by Life Cycle Stage for 1 ft² of Prelude® XL® Suspension System in 2’ x 2’ Module for Use over 75 years

<table>
<thead>
<tr>
<th>INDICATORS</th>
<th>PRODUCTION</th>
<th>USE</th>
<th>END OF LIFE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy (MJ)</td>
<td>2.8</td>
<td>0.2</td>
<td>-0.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Global warming potential (kg CO₂-Eq.)</td>
<td>0.22</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.22</td>
</tr>
<tr>
<td>Stratospheric ozone layer depletion (kg CFC-11 Eq.)</td>
<td>2.56E-09</td>
<td>4.1E-10</td>
<td>2.48E-10</td>
<td>3.218E-09</td>
</tr>
<tr>
<td>Acidification potential (CO₂-Eq.)</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>Eutrophication potential (kg N-Eq.)</td>
<td>3.30E-05</td>
<td>0.00000653</td>
<td>2.83E-06</td>
<td>0.00004236</td>
</tr>
<tr>
<td>Photochemical ozone creation potential (kg O₃-Eq.)</td>
<td>0.009</td>
<td>0.001</td>
<td>0</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Heavy-duty suspension system components have greater impacts than intermediate-duty suspension system components, because they contain more steel.
5. LCA: Results

The Life Cycle Assessment (LCA) was performed according to ISO 14040 and follows the PCR instructions. The cradle-to-grave LCA encompasses raw material production; transport of raw materials to production facility; manufacturing of ceiling panels; packaging; transportation to job site; use phase; and end of life including disposal or recycling.

Table 1. Description of the system boundary (X = Included in LCA; MND = Module not declared)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport from gate site</td>
<td>Assembly/Install</td>
</tr>
<tr>
<td>EP type</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>Cradle to grave – M²</td>
<td>All A – C modules mandatory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |

Life Cycle Environmental Impact Results: 1 M² Lyra PB PB Ceiling Panel

Declared Unit: 1 M² of ceiling panels for use over 75 years, impacts based on U.S. EPA TRACI 2.1 Impact Factors

Table 2. North American LCA Environmental Impact Results

<table>
<thead>
<tr>
<th>TRACI 2.1 Impact Assessment</th>
<th>PARAMETER</th>
<th>UNIT</th>
<th>1 M²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
<td>kg CO₂-Eq.</td>
<td>8.24E+00</td>
<td>7.65E-01</td>
</tr>
<tr>
<td>ODP</td>
<td>Stratospheric ozone layer depletion</td>
<td>kg CFC-11 Eq.</td>
<td>8.63E-07</td>
<td>8.02E-08</td>
</tr>
<tr>
<td>AP</td>
<td>Acidification potential</td>
<td>kg SO₂-Eq.</td>
<td>3.09E-02</td>
<td>2.88E-03</td>
</tr>
<tr>
<td>EP</td>
<td>Eutrophication potential</td>
<td>kg N-Eq.</td>
<td>1.26E-02</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>POCP</td>
<td>Photochemical ozone creation potential</td>
<td>kg O₃-Eq.</td>
<td>5.03E-01</td>
<td>4.67E-02</td>
</tr>
<tr>
<td>ADP</td>
<td>Abiotic resource depletion potential - fossil fuels</td>
<td>Surplus energy per extracted MJ, kg or m³ fossil fuel as a result of lower quality resources</td>
<td>2.96E+00</td>
<td>2.75E-01</td>
</tr>
</tbody>
</table>
5. LCA: Results (continued)

Table 3. LCA Results: Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>1 M²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>Renewable primary energy as energy carrier</td>
<td>MJ, LHV</td>
<td>3.09E+00</td>
<td>2.87E-01</td>
</tr>
<tr>
<td>PERM</td>
<td>Renewable primary energy resources as material utilization</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>PERT</td>
<td>Total use of renewable primary energy resources</td>
<td>MJ, LHV</td>
<td>3.09E+00</td>
<td>2.87E-01</td>
</tr>
<tr>
<td>PENRE</td>
<td>Non-renewable primary energy as energy carrier</td>
<td>MJ, LHV</td>
<td>3.09E+00</td>
<td>2.87E-01</td>
</tr>
<tr>
<td>PENRM</td>
<td>Non-renewable primary energy as material utilization</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>PENRT</td>
<td>Total use of non-renewable primary energy resources</td>
<td>MJ, LHV</td>
<td>2.90E+01</td>
<td>2.69E+00</td>
</tr>
<tr>
<td>SM</td>
<td>Use of secondary material</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>RSF</td>
<td>Use of renewable secondary fuels</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NRSF</td>
<td>Use of non-renewable secondary fuels</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>FW</td>
<td>Use of net fresh water</td>
<td>m³</td>
<td>3.41E-03</td>
<td>3.17E-04</td>
</tr>
</tbody>
</table>

Table 4. LCA Results: Output Flows and Waste Categories

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Unit</th>
<th>1 M²</th>
<th>1 ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NHWD</td>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>2.52E+00</td>
<td>2.39E+01</td>
</tr>
<tr>
<td>RWD</td>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>CRU</td>
<td>Components for re-use</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>MFR</td>
<td>Materials for recycling*</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>MER</td>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>EE</td>
<td>Exported energy</td>
<td>MJ, LHV</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EE = Exported energy
6. LCA: Interpretation

From the 2014 LCA Model of the ceiling life cycle covered in this study, it was concluded that the ceiling panel manufacturing process and raw materials – specifically, fiberglass substrate and scrim in the ceiling panel – have the greatest impact on Primary Energy Demand (PED) and “carbon footprint” (represented by Global Warming Potential [GWP]).

Life Cycle Impact Assessment of Lyra® PB Ceiling Panels relative importance in percentage terms for the Production, Use, and End of Life stages for the ceiling panel.

7. Supporting Documentation

Biopersistence of Glass Fibers

Glass fibers have been classified as “not classifiable as to its carcinogenicity to humans” (Group 3) by the International Agency for Research on Cancer (IARC) as referenced in volume 81. The MSDS for this product can be found at armstrongceilings.com/MSDS.

Quality Assurance

Armstrong World Industries has a robust internal Quality Assurance process that is based on industry-accepted best practices and is led by a team of quality professionals who have been certified by the American Society for Quality. The process involves several hundred different measures made throughout the manufacturing processes. In addition, our products are UL labeled for fire and acoustical performance, a process which involves strict oversight by Underwriters Laboratories. The Armstrong Ceilings acoustical laboratory is ISO 17025 certified and is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).
8. References

PCR

UL Environment

UL Environment General Program Instructions April 2015, version 2

Sustainability Reporting Standards

EN 15804: 2012-04 - Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product.

ISO 14025: 2006 – Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 14046:2013 – Environmental management- Water footprint- Principles, requirements and guidelines

ISO 15392:2008 – Sustainability in building construction- General principles

ISO 15686-1:2011 – Buildings and constructed assets- Service life planning- Part 1: General principles

ISO 15686-7:2008 – Buildings and constructed assets- Service life planning Part 7: Performance evaluation for feedback of service life data from practice

ISO 15686-8:2008 – Buildings and constructed assets- Service life planning Part 8: Reference service life and service life estimation

ISO 21930: 2007 – Sustainability in building construction -- Environmental declaration of building products

Testing And Classification References

ASTM C423 – Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM C636 – Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustic Panel and Lay-in Panels

ASTM E84 – Test Method for Surface Burning Characteristics of Building Materials

ASTM E1110 – Standard Classification for Determination of Articulation Class

ASTM E1264 – Standard Classification for Acoustical Ceiling Products

ASTM E1414 – Standard Test Method for Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum

ASTM E1477 – Standard Test Method for Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers

ASTM E413 – Classification for Rating Sound Insulation

8. References (continued)

Relevant Federal Standards and SOPS
Environment Canada, National Pollutant Release Inventory (http://www.ec.gc.ca/inrp-npri/)
EPCRA 313 Toxic Release Inventory Reporting (U.S.) (http://www2.epa.gov/toxics-release-inventory-tri-program)
US: Resource Conservation and Recovery Act (RCRA), Clause C (http://www.epa.gov/region6/rcra/)

Relevant PCRs
PCR Guidance for Building Related Products and Services, From the range of Environmental Product Declarations of UL Environment: “Part B: Non-Metal Ceiling Panel EPD Requirements”, October 2015v1.
UL Environment General Program Instructions April 2015, version 2
EN 15804: 2012-04 - Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product.
ISO 14025: 2006 - Environmental labels and declarations — Type III environmental declarations — Principles and procedures
ISO 14040: 2006 - Environmental management – Life cycle assessment – Principles and framework