Attaining speech privacy in open and closed plan environments

Office Acoustics
The message is loud and clear: office employees have long considered the intrusion of unwanted noise as one of the leading sources of workplace dissatisfaction. Over the years, study after study has measured employees’ satisfaction with their workplace environment and the results have continued to point to noise as a major cause of reduced effectiveness, higher stress, and declining job satisfaction.

The studies also indicate the majority of acoustical complaints in offices relate to speech privacy – overhearing an unwanted conversation or feeling that they are being overheard. A 2003 study conducted by the Center for the Built Environment (CBE) at UC Berkeley, for example, showed that as many as 72% of office workers are dissatisfied with speech privacy in their workplace.

Moreover, a study conducted by the Buffalo Organization for Social and Technological Innovation (BOSTI) found that office workers spent the majority of their time (over 62%) trying to do quiet, focused work at their desks or on the computers. Is it any wonder, then, that their findings have also shown that 65% of people in open plan offices are “often distracted” by noise?

Increased Noise Levels

CONTRIBUTING FACTORS:

- Increased workstation densities and benching arrangements, which means more employees are working in closer proximity to each other than ever before.
- Creation of “teaming” areas that increase noise levels as a result of interactive conversations required in this type of environment.
- More widespread use of speakerphones and the tendency of employees to speak more loudly when using them.
- A growth in the architectural trend toward exposed structure roof deck designs and the reverberation problems that accompany them.

As a result of trends like these, architects, interior designers, building owners, and facility managers all need to be more aware of speech privacy because it is quickly becoming a concern in a variety of buildings ranging from healthcare facilities, where physician-patient confidentiality is critical, to owner-occupied and for-lease office buildings, where privacy is needed in meeting rooms and board rooms as well as in open and closed offices.

Speech Privacy Levels

In order to attain a specific level of speech privacy for a particular architectural space, it is important to be familiar with the acoustical performance parameters that influence it. These are described in the box below.

<table>
<thead>
<tr>
<th>DEFINING SPEECH PRIVACY LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIDENTIAL</td>
</tr>
<tr>
<td>Detected, but not understood</td>
</tr>
<tr>
<td>NORMAL “NON-INTRUSIVE”</td>
</tr>
<tr>
<td>Effort required to understand</td>
</tr>
<tr>
<td>MARGINAL/Poor</td>
</tr>
<tr>
<td>Readily understood</td>
</tr>
<tr>
<td>NO PRIVACY</td>
</tr>
</tbody>
</table>

The term speech privacy itself refers to how well an overheard conversation is understood by an unintended listener. The commonly recognized levels of speech privacy are:

- **CONFIDENTIAL** – Represents a Privacy Index (PI) rating of 95% to 100%. Nearby conversations may be partially overheard, but definitely not understood. Co-workers may hear muffled sounds but the meaning of spoken words is not intelligible, and they are not distracted from their work.

ACOUSTICAL WALL PANELS

Acoustical wall panels complement acoustical ceilings by dampening the portion of sound that travels horizontally. As a result, they offer an attractive, functional way to add acoustical benefits to a space.

Acoustical wall panels usually consist of a 3/4” to 1” thick mineral fiber or fiberglass substrate with a wood, vinyl, or fabric covering. Depending upon the substrate and installation method, they can absorb 50% to 90% of the sound striking them, reducing noise not only within a space but also between spaces.

Panels with a fiberglass substrate are ideal for use in applications such as perimeter walls in open plan spaces, while those with a mineral fiber core are generally used in closed offices and areas requiring a tackable surface.

The panels are easy to install over existing walls, which is ideal for retrofit applications, or they can be installed directly to studs.
NON-INTRUSIVE (NORMAL) – Represents a PI rating between 80% and 95%. Nearby conversations can be partially overheard, and some words or phrases may be intelligible. Co-workers may hear some of the conversation but the loudness of speech is not distracting, and they can generally continue with their work.

Non-intrusive speech privacy is the most common design goal for most open plan office environments, especially where “knowledge worker” productivity is a key issue. However, it is generally not an adequate design goal in functional environments such as medical facilities, law firms, financial service organizations, or human resource departments, where confidential privacy levels are generally required.

MARGINAL (POOR) – Represents a PI rating of 60% to 80%. Most nearby conversations can be overheard and are likely intelligible. Co-workers can understand most words and sentences and the loudness of speech can be distracting to them.

NO PRIVACY – Represents a PI rating of 60% or less. All conversations can be clearly overheard and are fully intelligible. Co-workers can understand all words and sentences and the loudness of speech can be a constant distraction.

Balanced Acoustical Design

One of the most effective methods for achieving speech privacy in office environments is the use of an approach called balanced acoustical design. It consists of three key elements, which are often referred to as the “ABCs of Balanced Acoustical Design.” If any of the elements is missing or out of balance, speech privacy will be compromised. These elements are:

• ABSORB sound within a space by the use of high performance acoustical ceiling and wall treatments that prevent unwanted sound from building up due to reflections and/or intruding into an adjacent space.

• BLOCK sound transmission between spaces with a combination of high performance ceilings and effective partition wall or furniture panel design and layout.

• COVER the remaining intruding sound with an evenly distributed electronic sound masking system that can be adjusted to meet the desired privacy level.

ACOUSTICAL PERFORMANCE INDICATORS

A balanced acoustical design can help ensure speech privacy. To better understand the elements of that design and other acoustical solutions, it’s important to be familiar with the main indicators of acoustical performance. They are:

NOISE REDUCTION COEFFICIENT (NRC). Indicates the ability of a surface, such as a ceiling, to absorb sound from all angles. It is expressed as a number between 0.00 and 1.00, and indicates the average percentage of sound the ceiling absorbs. The higher the number, the better the surface acts as a sound absorber.

SABIN – Indicates the ability of an individual “space absorber,” such as an acoustical canopy, cloud, blade, or baffle, to absorb sound. The number of Sabin per unit is approximately equal to the total surface area of the unit that is exposed to sound (in sq. ft.), multiplied by the absorption coefficient of the material. The higher the Sabin rating, the more effective that unit will be in controlling reflected sound within the space.

ARTICULATION CLASS (AC). Indicates the ability of a ceiling to absorb sound that is reflected off the ceiling between two adjacent open spaces, such as office cubicles. The higher the number, the better the ceiling performs with respect to speech privacy between adjacent open plan spaces.

CEILING ATTENUATION CLASS (CAC). Indicates the ability of a ceiling to block sound in one room from passing up into the plenum and transmitting back down into an adjacent closed space that shares the same plenum. The higher the number, the better the ceiling acts as a barrier to sound intrusion between closed spaces.

SOUND TRANSMISSION CLASS (STC). Indicates the ability of a wall or furniture panel to block the transmission of sound through it and into an adjacent space. The higher the number, the better the construction acts as a barrier to sound transmission.

PRIVACY INDEX (PI). Indicates the degree of speech privacy in open or closed spaces. It is expressed as a percentage, and takes into account the acoustical performance of everything in the space. The higher the percentage, the better the speech privacy.
Electronic Sound Masking

Speech privacy depends on the difference in the level of intruding sound, which is the speech level of a nearby conversation, compared to the level of background sound, which in many cases comes from the air delivery system. To attain speech privacy, the level of background sound must be higher than the level of intruding sound.

Proper choice of acoustical ceiling and wall treatments will help lower the level of the intruding sound. In the past, background noise contributed by HVAC equipment was generally sufficient to assure adequate speech privacy. However, with the advent of quieter HVAC equipment, particularly variable air volume (VAV) systems and underfloor air distribution systems, this is no longer the case.

Consequently, a different source of controlled background sound is needed to override the intruding sound of speech and to preserve the privacy of a conversation without being obtrusive in and of itself. That sound is called electronic masking sound.

Sound Masking Systems

Traditional sound masking speakers are hung in the ceiling plenum by chains or wires from the deck above. In a typical system, the electronic masking sound is directed upward to create a reverberant sound field within the plenum. The masking sound then transmits down through the ceiling plane at reduced levels as it passes through the ceiling tiles, lighting fixtures, etc., on its way into the occupied space.

Choice of Ceiling is Key

The attainment of speech privacy is dependent on good acoustical design and the proper selection of interior systems and materials.

In that regard, the proper choice of a ceiling can serve to both limit the sound intrusion between spaces and affect the quality of sound within a space. The ceiling is thus a key element in creating an acoustical environment that can maintain speech privacy.

When selecting ceilings, the use of the same acoustical ceiling throughout the entire space is not always the best choice. That’s because in terms of speech privacy, there is a significant difference in the acoustical requirements of ceilings used in closed spaces and those used in open spaces. As a result, different areas require different ceilings.

Open Plan Areas

Disruptive noise and lack of speech privacy can be a salient problem in open office plans. Intrusive noise can significantly reduce employee concentration and work output, and lead to decreased job satisfaction. In addition, overheard conversations can lead to unintentional confidentiality breaches in sensitive work areas.
In open spaces, the main function of the ceiling is to absorb sound that would normally bounce off the ceiling into a nearby space or cubicle. For speech privacy, an acoustical ceiling with an NRC of 0.80 or higher is the best choice. Always base your product selection on ceilings with UL-classified acoustical performance. This will ensure that the ceiling meets or exceeds published values.

Closed Plan Areas

The audibility of speech between adjacent closed spaces is not a problem until it becomes intelligible. Unfortunately, Privacy Index ratings for many closed rooms often indicate less than confidential speech privacy, even with doors closed. In closed spaces, the main function of the ceiling is to limit the transmission of sound between adjacent rooms, especially when these spaces share a common ceiling plenum. For speech privacy, use a mineral fiber ceiling that is installed continuously across the ceiling plane, and combines moderate sound absorption (NRC 0.60 to 0.70) with good ceiling attenuation (minimum CAC 35, with CAC 40 preferred). It may be necessary to supplement the ceiling system by providing closure/seal components to stop sound leaks around ceiling penetrations. It is especially important to control sound leaks through air return openings. Block noise with an effective combination of wall construction and ceiling. If space relocation is not an issue, use a floor-to-slab fixed stud wall construction (drywall and fiberglass insulation) with a minimum STC 40 rating. If space relocation is an issue, use either fixed stud walls or relocatable walls of floor-to-ceiling height with an STC 40 rating or higher, and a ceiling with a minimum CAC 35, CAC 40 being preferred.

All components of the wall system should be engineered for STC performance and the removal of problematic sound leaks from doors, wall system joints, and seals at the ceiling and floor interface. Construction of the wall is critical since any crack in it or in the wall joints will allow sound to intrude into the adjoining space.

Exposed Structure Areas

In addition to the acoustical issues related to typical office spaces, there are additional considerations that may need to be taken into account because they affect acoustical performance. One such example is the trend toward exposed structure, sometimes called the “warehouse look.” Exposed structure designs can cause problems because sound reflecting off the roof deck results in excessive reverberation. In addition, if the exposed roof deck is less than 15 feet high, reflections between adjacent open plan cubicles can cause distractions for nearby occupants. Many noise issues related to exposed structure designs can be addressed through the use of acoustical ceiling clouds, canopies, blades, or baffles. Designed for use in either new construction or retrofit applications, these design elements are an ideal way to define spaces in exposed structure areas and enhance acoustics without sacrificing design flexibility.
METAL & WOOD CEILINGS

Mineral fiber panels suspended in a metal suspension system are the most popular acoustical ceiling systems used in commercial spaces today. However, there is a trend toward an increased use of ceiling materials other than traditional mineral fiber panels. The reason for this is a desire to create more dynamic acoustical ceiling visuals. Two of today’s more common alternatives to mineral fiber panels are metal and wood.

METAL CEILINGS

One reason for the increasing use of metal ceilings is their durability; another is aesthetics. Metal ceilings are available in a variety of finishes that can impart a very high tech or sophisticated look to a space. And, even though it is metal, this type of ceiling can provide very good acoustical control when designed for that purpose.

However, in order to achieve good sound absorption, the panel faces must be perforated, and the panel backloaded. Perforations vary in size depending on aesthetic appeal, although today there are micro-perforated panels in which the holes are so small, they are essentially invisible. Perforated panels are usually supplied with a black, sound absorbent acoustical fleece liner, or both a liner and an encapsulated fiberglass batt behind the perforations. The NRC of perforated panels can range from 0.65 to 0.90 depending on the backing.

WOOD CEILINGS

One reason wood ceilings continue to increase in popularity is their beauty. Wood is often the most elegant architectural element within a space. Wood ceilings are thus perceived as upscale and stylish, even when used with a standard suspension system and standard light fixtures. Wood ceilings also impart a warm ambiance to a space.

As in the case of metal, wood ceilings are available in a variety of finishes and sizes. Perforated versions are also offered for better acoustical performance compared to non-perforated panels. The NRC of perforated panels can be as high as 0.75 depending on the backing used.

Clouds, Canopies, Blades, and Baffles

Floating elements located above work areas provide a type of interrupted ceiling plane. As such, they help control reflections between cubicles and distant reverberation noise, thus reducing occupant distractions.

Floating elements actually provide greater sound absorption than a continuous ceiling of the same surface area because the sound is absorbed from both the front and back surfaces of the cloud. In fact, the more “live” the space, the greater will be the effect on reverberation time from the addition of clouds.

The ability of acoustical floating elements to combine an aesthetically pleasing visual with sound absorbing properties that provide spot acoustics makes them ideal for use in exposed structure areas as well as over spaces such as workstations and reception desks. Use of multiple floating elements improves acoustics even more.

Ceiling Height

Ceiling height is another key factor affecting the performance of architectural sound controls. When it comes to height, it is easier to achieve speech privacy with high ceilings than with low ceilings, and the range of ceiling options is also expanded.
High ceilings provide better acoustical performance than low ceilings due to the longer paths sound must travel. This impacts all sound, whether it is a voice intruding from an adjacent office, or masking sound radiating down from the ceiling plane. High ceilings allow a wider range of ceiling panels, even less than 200 AC, to be used in open plan designs.

In contrast to high ceilings, which offer greater performance options, low ceilings present several acoustical design challenges. Selection of an acoustical ceiling system, for example, becomes more critical due to the shorter paths that sounds must travel. For open plan designs, this means a ceiling with an AC of 200 or more can be the only viable option for achieving acceptable speech privacy.

Lighting Fixtures

For years, the ceiling plane has had to incorporate lighting fixtures, sprinklers, air diffusers, and the like. Today, as building systems require more technology, the ceiling plane is becoming even more congested with addition of sensors, actuators, and other types of similar equipment.

It is important to remember that lighting fixtures and other devices installed in the ceiling plane may adversely affect an acoustical ceiling’s performance. This applies to both the sound absorbing and sound blocking performance of the ceiling system.

For example, when choosing light fixtures, especially for an open plan office, it is critical to minimize sound reflection off the surface of the fixtures. Typical flat lens lighting fixtures are generally the worst offenders. For open plan applications, pendant lighting fixtures are a much better choice.

A Quieter Workplace

A balanced acoustical design consisting of high performance acoustical ceilings and walls to absorb sound is an easy and economical way to help meet speech privacy needs, boost employee satisfaction, and increase workplace effectiveness. The successful use of acoustical materials will help provide office employees with the level of speech privacy necessary for them to feel more comfortable in their workplace environment.
Resources

This information on speech privacy in open and closed plan office environments has been provided by Armstrong World Industries. There are additional resources available to you for all of your speech privacy design needs that include:

- Continuing Education: Acoustical Basics for Design Professionals at armstrongceilings.com/ceu
- Your Armstrong Ceiling Systems representative at 1 877 ARMSTRONG
- Answers to your technical questions through TechLine at 1 877 ARMSTRONG or techline@armstrongceilings.com